Acceleration of Hardware Testing and Validation Algorithms using Graphics Processing Units
نویسنده
چکیده
(ABSTRACT) With the advances of very large scale integration (VLSI) technology, the feature size has been shrinking steadily together with the increase in the design complexity of logic circuits. As a result, the efforts taken for designing, testing, and debugging digital systems have increased tremendously. Although the electronic design automation (EDA) algorithms have been studied extensively to accelerate such processes, some computational intensive applications still take long execution times. This is especially the case for testing and validation. In order to meet the time-to-market constraints and also to come up with a bug-free design or product, the work presented in this dissertation studies the acceleration of EDA algorithms on Graphics Processing Units (GPUs). This dissertation concentrates on a subset of EDA algorithms related to testing and validation. In particular, within the area of testing, fault simulation, diagnostic simulation and reliability analysis are explored. We also investigated the approaches to parallelize state justification on GPUs, which is one of the most difficult problems in the validation area. Firstly, we present an efficient parallel fault simulator, FSimGP 2 , which exploits the high degree of parallelism supported by a state-of-the-art graphic processing unit (GPU) with the NVIDIA Compute Unified Device Architecture (CUDA). A novel three-dimensional parallel fault simulation technique is proposed to achieve extremely high computation efficiency on the GPU. The experimental results demonstrate a speedup of up to 4× compared to another GPU-based fault simulator. Then, another GPU based simulator is used to tackle an even more computation-intensive task, diagnostic fault simulation. The simulator is based on a two-stage framework which exploits high computation efficiency on the GPU. We introduce a fault pair based approach to alleviate the limited memory capacity on GPUs. Also, multi-fault-signature and dynamic load balancing techniques are introduced for the best usage of computing resources on-board. With continuously feature size scaling and advent of innovative nano-scale devices, the reliability analysis of the digital systems becomes more important nowadays. However, the computational cost to accurately analyze a large digital system is very high. We proposes an high performance reliability analysis tool on GPUs. To achieve high memory bandwidth on GPUs, two algorithms for simulation scheduling and memory arrangement are proposed. Experimental results demonstrate that the parallel analysis tool is efficient, reliable and scalable. In the area of design validation, we investigate state justification. By employing the swarm intelligence and the power of parallelism on GPUs, we are able …
منابع مشابه
Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملMassively Parallel Genetic Algorithm – Pattern Search for Nonlinear Optimization with GPU Computing
This paper presents a massively parallel Genetic Algorithm – Pattern Search (GA-PS) with graphics hardware acceleration on bound constrained nonlinear optimization problems. The objective of this study is to determine the effectiveness of using Graphics Processing Units (GPU) as a hardware platform for Genetic Algorithms (GA). The global search of the GA is enhanced by a local Pattern Search (P...
متن کاملAcceleration of Medical Imaging Algorithms Using Programmable Graphics Hardware
This thesis presents acceleration techniques for medical imaging algorithms. The rapid development of medical scanning devices produces huge amounts of raw data. On the one hand, high-resolution images can be computed from the raw data and, thus, providing the physicians better basis for diagnosis. On the other hand, the amount of raw data leads to longer processing times. About three years ago...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012